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Abstract-A method is proposed for calculating parameters of combined heat and mass transfer in a 
multicomponenl turbulent liquid film, which is based on solving a coupled system of differential equations 
of convective heat conduction and of multicomponent convective diffusion. The diffusion equation and 
appropriate boundary conditions are of matrix character. As an example, consideration is given to the 

process of simultaneous absorption of two gases by a nonvolatile turbulent falling film of absorbent. 

1. INTRODUCTION 

THE DEVELOPMENT of a theory and methods of pre- 

dicting the processes of combined heat and mass 
transfer arouse great interest owing to their wide- 
spread use in up-to-date industrial practice. These 
processes are notable for a complex structure and 
necessitate a simultaneous solution of momentum, 
substance and energy transfer equations, including 
coupling conditions at the interface. 

Investigations of combined heat and mass transfer 
in laminar and wavy liquid film [I], in a liquid film 
flowing along a surface with regular roughness [2], in 
the systems consisting of a set of droplets or bubbles 
[3] enabled the establishment of the general functional 
relationship for heat transfer (mass transfer) 
coefficients [I]. This relationship is represented as a 
product. with one term being equal to the heat transfer 
(mass transfer) coefficient in the absence of mutual 
influence of heat and mass and the other being com- 
mon for all types of the processes considered. 

Modelling the processes of combined mass and heat 
transfer in multicomponent systems becomes far more 
complicated. Superposed diffusional interactions of 
the mixture components may give rise to such 
phenomena as reverse mass transfer, mass-transfer 
barrier and osmotic mass transfer [4]. All the above 
phenomena are characterized by the absence of a 
direct relation between the component driving force 
and mass flux (for example, in reverse mass transfer, 
the component driving force and its flow are directed 
oppositely). Therefore, they qualitatively distinguish 
the multicomponcnt processes from similar binary 
ones and create significant difficulties in their theor- 
etical description. 

Working out adequate methods to study and cal- 
culate the heat and mass transfer processes in moving 
systems is based on the employment of an apparatus 
of differential equations of convective mass and 
energy transport [5]. When multicomponent mixtures 
are described, the mass transfer equations are of 

matrix-vector form and coupled, which makes their 
solution difficult to accomplish. At the same time, it 
is exactly the matrix character of the equations, in 
accordance with postulates of the linear thermo- 
dynamics of irreversible processes [6], which allows 
the mutual influence of various transfer phenomena 
to be taken into account. 

The current study is devoted to theoretically inves- 
tigating simultaneous heat and mass transfer in a 
multicomponent turbulent liquid film based on a solu- 
tion of the differential equations of convective heat 
and mass transfer. A need for taking into con- 
sideration the regularities of turbulent mass and 
energy transfer introduces an additional difficulty in 
the process analysis. 

2. EQUATIONS AND PARAMETERS OF THE 

PROCESS MODEL 

Let a liquid film fall by gravity down a vertical wall. 
The axis x is taken to be directed downwards along 
the wall and the axis _V perpendicularly to it. It is 
assumed, as usual [7-91, that physical properties of the 
liquid phase are constant, the net diffusional enthalpy 
transfer throughout the phase volume is negligible, 
there are no external forces, the phase equilibrium 
conditions at the film interface are fulfilled and the 
film thickness remains unchanged. It is also presumed 
that a dissipation term in the heat transfer equation 
and substance transfer by thermal diffusion can be 
ignored [IO]. Then the equations of steady convective 
heat and mass transfer in the turbulent multi- 
component liquid film have the form 
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NOMENCLATURE 

C vector of molar concentrations of liquid U liquid film flow velocity 

mixture components ii integral mean over the film thickness 

C’ vector of concentrations transformed value of u 
using equalion (17) V vector of parameters of the equilibrium 

c vector of dimensionless concentrations relation (5) 
obtained using equation (20) I dimensionless film velocity defined by 

IDI matrix of multicomponent diffusion equation ( 19) 

coefficients W vector of parameters of the equilibrium 

rn’, diagonal matrix consisting of cigenvalues relation (5) 

of matrix [D] .Y coordinate along the film flow 

[El matrix of multiconlponent turbulent f coordinate across the film flow. 

diffusion cocihcients, equation (10) 
[j?] film thickness average matrix [El, 

Greek symbols 

[E’ 
]n]+zU, 

_j diagonal matrix consisting of eigcnvaiucs F: turbulent constituent of transfer 

of matrix [E] coefficients 

e unit vector d film thickness average value of 8 

Fr Froude number, G2/hog V dimensionless coordinate defined by 

.g acceleration due to gravity equation (19) 
AH, molar enthalpy difference of component r, 1 -q 

i in gaseous and liquid phases K thermal diffusivity 

transferred by its mass flux across the li thermal conductivity 

interfdce v kinematic viscosity 

it,, liquid film thickness r dimensionless coordinate defined by 

% unit matrix equation (19) 

[Ll fund~~rnen~l matrix for [D] and [E] (T eddy thermal di~usivity 

N vector of molar fluxes of mixture 6 film thickness average value of G, K+K 

components 
?I number of mixture components 
Pr Prandtl number. V/K Subscripts 

Pr film thickness average turbulent Prandtl 0 contact device entrance 

number, r/6 c equilibrium 

P parameter of analytical solution defined i component i 
by equation (62) w contact device wdh. 

Y heat flux 
Re Reynolds number, 4&,/v 

.sc; modified Schmidt number of the Superscripts 

component i, ~1 0; q~dntity transformed using the 

SC; film thickness average turbulent modified fundanlentai matrix 

Schmidt number of the component i, (T) row-vector 

r/E: averaged value. 

where a(y) is the eddy thermal diffusivity and [E(r)] at the wall (the adiabaticity and impermeability 
is the matrix of turbulent diffusion coefficients. These conditions) 
quantities are dependent both on physicochemi~d~ 
properties of the liquid mixture and on hydrodynamic c:T $C. 

parameters. The column-vector C consists of molar 
,I’ = 0, ;v = 0, -l=O, 

34’ 
i= I,2 ,..., n-l (4) 

concentrations of the components C, and has the 
dimension n - I [ 1 I]. at the film interface (the phase equilibrium and heat 

Boundary conditions are prescribed by the fol- balance conditions) 

lowing relations : 
.I’ = h,, c - vnw, 

at the entrance I, 

(51 

.\’ = 0 t T = T,,, C = C,, (3 
y= x NIAH,. (6) 

P= t 
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To express the heat and mass fluxes in terms of 
gradients of temperature and component concen- 
trations, use must be made of the Fourier law and the 
generalized Fick law. Furthermore, an additional 
condition of mass flux relation, which has differ- 
ent forms for different processes, is imposed on the 
system. 

For instance, for the process of mult~component 
distillation. with the equimolarity condition 
(X2 , Nn = 0) used. relation (6) acquires the form 

(7) 

where r,,! = AH,-AH,,; i= 1, 2 ,.... n-1, whereas, 
for multicomponent absorption with the inert com- 
ponent (N,, = 0), relation (6) looks as follows: 

where yAi = AH, ; i = 1, 2.. . . , n- 1. Therefore, con- 
dition (6) in the general case is written in the form 

where r = r,,; for the multicomponent distillation and 
r = r,,, for the multicomponent absorption with the 
inert component, etc. 

The matrix of the turbulent diffusion coefficients 
entering into equation (2) is of the following structure 
[12-151: 

[E(Y)1 = ]D]+MY) [I, (10) 

where an is the turbulent diffusion coefficient which 
is specified by hydrodynamic conditions and can be 
found from the results of studying turbulence in 
binary mixtures [ 151. 

The matrix [D] is expressed in terms of the molec- 
ular diffusion coefficients of binary pairs of the mix- 
ture components. Equations for calculating [D] can 
be obtained with the aid of a molecular theory of 
fluids [IO, II, 161. Salient features of the matrix [D] 
are reducibility to a diagonal form as well as realness 
and positiveness of the eigenvalues [7, 161. 

The matrix [E] defined by equation (10) will be 
shown to possess the same properties. 

Indeed, let [L] be the fundamental matrix for [D], 
i.e. [r,] ‘[Dj[t] = m, . 

Then 

zz :D’, +sD(y) in, = wi 

whereE:=D:+ct,,i=Ir2 ,..., n-l. 

Since 0: > 0 and .Q, > 0. then E( > 0 for all i. 
Consequently, the matrix [E(y)] is reducible to the 
diagonal form (with the help of the same fundamental 
matrix as that for [D]) and has real positive eigen- 
values. 

The eddy thermal diffusivity coefIicient entering 

into equation (l), similarly to the matrix [E(J)]. com- 
prises two terms [8] : 

a(y) = K+fk(y) (11) 

where Ed is the thermal analogue of the turbulent 
diffusion coefficient Q,(Y). 

3. TRANSFORMATION OF THE SYSTEM OF 

EQUATIONS 

The system of equations (l)-(2) with the boundary 
conditions (3)-(5), and (9) is a coupled system of 
parabolic equations with 4th-kind matrix coupled 
boundary conditions, which sets up appreciable 
difficulties in its solution. 

Therefore, use will be made of the diagonalizability 
property of the matrices [D] and [E] and, applying 
the method proposed in ref. [17], the initial system 
wih be transformed to the uncoupled form 

(12) 

The boundary conditions are : 

for 

for 

s = 0 , T=7-“, cY=c; (14) 

(Isa) 

for 

y = h,, C’ = v’T+w’, i g = $,T) t% 
;?rJ 

U6) 
‘_ 

where 

C’ = [L]_‘C, c; = [XL- ‘Co (17) 

V’ = [ZJ’V, W’ = [L]-‘W, riT) = r”“)[D][L]. 

(18) 

Introduce diinensionless variables via the ratios 

where 

C& = v;r,+w;, T, = (C,, - W,)/V,. (21) 

Then the system (12)-( 16) takes the final form 
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E = 0, t = 0. f; = 0 (24) 

where 

(29) 

4. DETERMINATION OF THE TURBULENT 

TRANSFER COEFFICIENTS 

Let us assume that the coeflicients of turbulent 
diffusion and eddy thermal diffusivity are equal [ 181 

d’?) = Ed”/) = S(V). (30) 

Relation (30) is rather a complex function, since 
the character of variation in the turbulent transfer 
coefficient near the wall, in the flow core and at the 
phase interface is different [19]. There are extensive 
investigations concerned with determining the func- 
tionat relation (30) for various layers of the film flow 
[X, 19-211. Study 1181 contains a thorough analysis of 
those investigations, and suggests using the following 
three expressions. 

For the near-wall region, the van Driest equation 
[22] is recommended 

X(l-eXP(- ;~~j~)l]“} (31) 

where 

0 <‘I <VT, rl: = 120,/(Fr)jRe. (32) 

For the turbulent flow core, the Keichardt equation 
1231 is advised 

; = K3-(2fj-rl’)(3-4q+29’) 
,/W) 

(33) 

where the constant K is obtained from the condition 
that the results of computation by equations (3 1) and 
(33) coincide at the point 9 = ~7 determined from 
equation (32). 

For the boundary region, a modification of 

the Lamourelle and Sandal1 equation [24] is 
recommended 

E 
= 3.153 x 10 ’ Fr-’ 1 &“38 

1’ (1 -sjz (34) 

which is utilized for the dimensionless thickness rang- 
ing from tl = I to the value 4 = II:, at which the results 
of calculations by equations (33) and (34) arc in 
agreement. 

To determine the profile of turbulent diffusion 
coefficient from equations (31))(34), two com- 
putational procedures need to be constructed. The 
first of them is intended for calculating the constant 
K in equation (33) by the known Re and Fr values 
and at q = $. The second procedure determines the 
dimensionless thickness VT from the familiar Re and 
Fr values. and from the K value calculated in the first 
procedure. Both the procedures are realized in the 
present study using the Newton method. 

Figure I plots the characteristic variation in the 
turbulent diffusion coefficient across the film thickness 
obtained from equations (31)-(34) for various Re and 
Fr values. The plots clearly indicate the region of 
near-wall film flow, the turbulent flow core and the 

(a) 

W 

FIG. I. Dimensionless turbulent diffusion coefficient vs 
dimensionless film thickness for different Re and Fr: (I) 
Re= 5000, Fr= 54.5; (2) Rr = 5000, Fr = 436; (3) 

Re = 20000, Fr = 218: (4) Ra = 10000. Fr = 218. 
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boundary region (they are separated by a dot line). 
For curve 1, in particular, those regions conform to 
the intervals O-A, A-B and B-l .O. 

5. DETERMINATION OF THE VELOCITY 

PROFILE 

To obtain the equation defining the velocity dis- 
tribut~on across the film thickness, the steady film flow 
equation [S] is employed in the form 

Its integration with allowance for the boundary con- 
dition at the interface J = h, and du/dv = 0, yields 

du 
(r*+Kr)) dJ = S(h” -.I% 

Equation (35) is then integrated taking account of the 
boundary condition at the wail (_r = 0 and u = 0) : 

or, in the dimensionless form (see equation (I 9)) 

Using the definition of the integral mean flow vel- 
ocity, written in the dimensionless form 

(37) 

a criterion is obtained which enables the parameter Fr 
to be found from the assigned Re [18]. To determine 
Fr, the current study again employs the Newton 
method utilizing equations (31), (33), (34) and (36). 

Thus, the solution for the dimensionless problem 
(22)-(27) in view of equations (30)-(34) and (36)- 
(37) is governed by the dimensionless parameters Re, 
Pr, SC:, a,. h,, i = I, 2,. , n- I, i.e. is dependent on 
the 3n- 1 quantities. 

6. SOLUTION 

To calculate the fundamental matrices [L], the 
method suggested in ref. [25] is applied. 

The transformed system (22)-(27) is solved by the 
factorization method using finite-difference operators 
[26] : 

G?w W(k,j)-Wfk-l,.j) 

a< At 

[ W(k .i+ 1) - Wk .A1 

_ Q(i>+Q(.i--It 
~m--2--- [ W(k, j) - W(k, j- I)] (38) 

where k and j are the numbers of steps along the 
vertical and horizontal axes, A< and A11 are the rel- 
evant magnitudes of steps, whereas W and Q 
represent, accordingly, either t and 0, or C, and El, 
i= I,2 ,..., n-l. 

Since the relationships between dimensionless con- 
centrations and temperature as well as between their 
derivatives at the film interface retain a coupled 
character (equations (26) and (27)), defining the 
boundary factorization coe~cients requires that the 
system of algebraic equations should be solved at each 
step along the vertical coordinate. Here, for improving 
accuracy of the derivative approximation at the tilm 
interface, use is made of finite-difference analogues 
which allow approximation with an accuracy of third- 
order of smallness [27] : 

+ W(k,N-2)+9W(k,.~)~ (39) 

where N is the total number of steps along the hori- 
zontal coordinate and f(k) is the value of the appro- 
priate function at the interface defined for any k by 
the equation 

(40) 

Having found, via the factorization method. the 
distributions of dimensionless concentrations of the 
components ~((5, q), i = I, 2,. . , n - 1 and of the tem- 
perature t(i;, q), it is possible to predict any charac- 
teristics of multicomponent heat and mass transfer, 
e.g. the values of near-wall and interface con- 
centrations and temperatures, their integral mean 
values given by the equations 

the mass and heat fluxes of the components at the 
interface, the mass and heat transfer coefficients, etc. 

7. SOLUTION FOR LONG DISTANCES FROM 

THE ENTRANCE 

Let us now consider the development of the heat 
and mass transfer process for long lengths of a con- 
tacting device. For 4 --f r;i, the component con- 
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centrations and film temperature tend to equilibrium 
constant values (to asymptotics). 

To determine the asymptotics, use is made of the 
relations 

i= 1,2.....n-I; 

which can be obtained by integrating the convective 

diffusion and heat conduction equations over the 
film thickness with consideration of the continuity 

equation. 
The boundary condition (27) yields 

where 

In view of equation (43). equation (42) gives 

or (see equation (41)) 

It follows from equation (44) that the expression in 
brackets is the same for any 5. Particularly. for 5 = 0. 
when the conditions (24) are fulfilled. this expression 
is equal to zero, and hence 

i = ,(l“.z, (45) 

Equality (45) is a dimensionless form of the heat 
balance for a contacting device section of arbitrary 
length, starting from l = 0. 

Now let us taken into account that, for 5 --) cc, 

c = Cl,!_ I. i = tl,,= , 

and make use of the boundary condition (26) : 

c+ar= e. (46) 

Substituting equation (45) into equation (46) results 

in 

c+a(w’l“c) = e. (47) 

To solve the vector equation (47) with respect to i?, 
it is written for the i-component as 

>l I 

and trdnsformcd : 

The matrix [Y] is defined as 

[Y],, = I +a,c0,. [Y],, = U,fUA (i # k). (48) 

Then, instead of equation (47), we obtain 

[Y]e = e. (49) 

The asymptotics can then be found from equations 
(45) and (49) : 

C(< + 22) = [Y] ‘e, 

(50) 

8. NUMERICAL EXAMPLE AND DISCUSSION 

OF RESULTS 

By way of example, the current study has numeri- 
cally investigated the process of three-component 
nonisothermal absorption in which a two-component 
gas mixture is absorbed by a nonvolatile turbulent 
liquid film. Figures 2-7 give the characteristic depen- 

FIG. 2. Dimensionless temperature vs the contacting device 
length at Pr = IO, SC’, = 1500, SC> = 2500, rr, = 1.1, 
u, = 0.9, h, = 0.3. hz = -0.1 for different Re: (I) 
R:, = 2000: (2) Rr = 5000 (solid lines conform to values in 
the phase core. dash lines to values at the film interface and 

dash-and-dot lines to values at the wall). 

0.8 

FIG. 3. Dimensionless concentrations of components vs the 
contacting device length (the values of parameters and 
notation are the same as in Fig. 2) ; (l), (2) Re = 20 000 ((I) 

C, ; (2) cz) ; (3). (4) Re = 5000 ((3) c,, (4) ~2). 
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0.8. 1 0.8- 1 

FIG. 4. Dimensionless temperature vs the contacting device 
length at Re = 10000, Pr = IO, u, = 1.1, a, = 0.9, h, = 0.3. 
hZ = -0.1 for different Sc: (notation is the same as in Fig. 
2) : (I) SC’, = 1500, SC; = 2500; (2) SC’, = 150, SC; = 250. 

FIG. 6. Dimensionless temperature vs the contacting device 
length at Re = 10000, Pr = 10, SC’, = 1500, SC; = 2500, 
CI, = 1.1. LI? = 0.9 for different 6,: (I) b, = 0.3, hZ = -0.1 ; 
(2) b, = 0.03, bz = -0.01; (3) b, = 0.003, bz = -0.001 
(solid lines conform to values in the phase core. dashed lines 

to values at the film interface). 

dences of dimensionless concentrations of the com- 

ponents and temperatures on the contacting device 
length for various governing parameters of the 
problem. Solid lines show the temperature and con- 
centration profiles in the phase core (integral mean 
over the film thickness values, equation (41)), dash 
lines denote the profiles of interface values and 
dot-and-dash lines represent the profiles of near-wall 
values. 

Clearly, on the initial section of the contacting 
device, the temperature and concentrations drops 
across the film thickness are maximal and, therefore, 
the motive forces of heat and mass transfer, namely 
the gradients of temperature and concentrations of 
the components, are maximal as well. With increasing 
5, the transfer rate starts decreasing, the motive forces 
reduce and, ultimately, the process ends up by going 
to the equilibrium temperature and concentrations 
values. Naturally, in this case the relevant values at 
the wall, in the flow core and at the film interface 
become identical and equal, respectively, to f(l---) CD) 
and C(< + XI) (equations (50)). This allows the effec- 
tive length of the apparatus to be readily identified. 

By using equations (l9)-(2l), conversion is effected 

from the dimensionless parameters of the problem to 

FIG. 5. Dimensionless concentrations of components vs the 
contacting device length (the values of parameters and 
notation same as in Fig. 4) : (I), (2) SC’, = 1500, SC> = 2500 
((I) (‘,; (2) cz); (3), (4) SC; = 150, SC; = 250 ((3) (‘,; 

(4) cz). 

those dimensional and, thereafter, with the help of 
equations (I 7), to the real concentration values of the 
components in the turbulent liquid film 

The problem considered is multiparametric, and 

studying the influence of various parameters on the 
solution can be of profound interest. The suggested 
prediction method enables such an analysis to be per- 
formed on the basis of the distributions obtained. 

Figures 2 and 3 present the corresponding dis- 
tributions for different values of Re. The higher the 
film flow velocity, the more intense the transfer 
process. Therefore, with increasing Re. the section of 
active heat and mass transfer (a rapid variation of 
temperature and concentrations of the components) 
shifts to the left, to smaller values of the dimensionless 
length i. Inasmuch as the asymptotics (equations 
(50)) are unaffected by Re, curves I and 2 in Fig. 2, 
as well as 1 and 3, 2 and 4 in Fig. 3 coincide, when 
<- %. 

Figures 3 and 4 give the distributions of tem- 

perature and concentrations of the components for 
different values of SC:. A decrease in SC’, and SC;, with 

FIG. 7. Dimensionless concentrations of components vs the 
contacting device length (the values of parameters and 
notation sameas in Fig. 6): (I), (2) 6, = 0.3, b, = -0.1 ((I) 
c, ; (2) cl); (3), (4) b, = 0.03, hT = -0.01 ((3) c, ; (4) cl); 

(5), (6) b, = 0.003, b2 = -0.001 ((5) c, ; (6) cJ. 
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other parameters unchanged, implies that the mass 
transfer rate increases as against the heat transfer 
rate. On the one hand, this leads to a shift of the 
temperature curves to the right (Fig. 4) and to a shift 
of the concentration curves to the left (Fig. 5). On 
the other hand, according to equations (50), the 
asymptotic temperature values fdli (Fig. 4), whereas 
the asymptotic values of concentrations of the com- 
ponents rise (Fig. 5). 

1.0 

t 
0.8 _ 1 

Figures 6 and 7 present the temperature and con- 
centration profiles for different h,. With increasing 
absolute values of h, and hL, which are proportional 
to the appropriate absorption heats of the components 
(see equation (I%)), the film heating is enhanced (Fig. 
6) and concentrations of the components dissolved in 
it diminish (Fig. 7). 

FIG. 8. Dimensionless temperature vs the contacting device 
length at RP = 10000, Pr= IO, SC: = 1500. SC; = 2500, 
a = 1.1. a2 = 0.9, f, = 0 For different temperature boundary 
conditions at the wall (notation is the same as in Fig. 6) : (I), 
(2)condition (15a); (3). (4)condition (52); (I). (3) h, = 0.3, 

II? = -0.1 ; (2), (4) h, = 0.03, h2 = -0.01. 
It was also interesting to study the effect of the type 

of the profile of the film flow velocity c(n) on the 
distributions of heat and mass transfer characteristics. 
For this end, along with the profile (36), the current 
study employed a plane profile corresponding to the 
film flow at a flow-rate mean velocity : 

r(q) = 1: = 1. (51) 

The analysis revealed that the effect of the velocity 

solution is illustrated in Figs. IO and I I. An asymp- 
totic value (when f + Sx) for the temperature profile, 
with the boundary condition (53) used is equal to t,. 
By substituting this quantity into condition {26), the 
asymptotics of the concentration curves are found : 

profile on the distributions of temperature and con- 
centrations of the components is very small. Devi- 
ations between the temperature curves obtained from 
equations (36) and (51) are not larger than 34% 
whereas, for the concentration curves, those devi- 
ations are still smaller. Thus. the use of the plane 
velocity profile for predicting heat and mass transfer 
in the turbulent liquid film produces an inconsiderable 
error. This inference is consistent with the results of 
studying mass transfer in a laminar film flow [25], the 
error with the plane velocity profile as applied to the 
turbulent flow being still smaller than that applied to 
the laminar flow. 

C(< -9 x) = e-at,. iw 

It follows from the above equation that, at t, = 0, the: 
asymptotic values of dimensionless concentrations oli 
ail components are equal to unity. This is evident from 
Fig. 9 (curves 5-8) and Fig. II (curves t-2). 

It should be noted that the plots given in the figures 
and some conclusions drawn from their analysis agree 
with the results of study [IS] dealing with a similar 
problem in a binary system. However, the problem 
considered here is much more complicated, because 
the studied process of coupled heat and mass transfer 
studied is multicomponent. 

Apart from the adiabatic boundary condition 
(isa), the present study has also employed the ist- 
kind boundary condition conforming to isothermal 
wall 

Indeed, the crossing effects of multicomponenl 
diffusion manifest themselves both near the contactin~~ 
device wall and close to the film interface, i.e. where 

1’ = 0. T= 7-', (52) 

or, in dimensionless form, 

q=o. r=t* (53) 

where 

T, - T,, 

Using the boundary condition (52) instead of (15a) 
results in an appreciable variation of the temperature 
and concentration distributions. Figure 8 gives the 
temperature dependences, and F&. 9 the cor- FIG. 9. Dimensionless concentrations of components vs the 

responding concentration dependences, which enable contacting device length (the values of parameters and 

comparison of the results obtained under adiabatic 
notation same as in Fig. 8): (l)--(4), condition (1%); (S)- 

and isothermal conditions at the wall (t, = 0). 
(8). condition (52); (l)-(2), (5)-(6), h, =0.3. b? = -0.1 
((I), (5) cl; (2). (6), (‘2); G-(4), (7) (8) h, = 0.03. 

The influence of the parameter t, on the problem hZ = -0.01 ((3), (7) C, : (4). (8) CZ). 
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1.0 
t 

0.81 

FIG. IO. Dimensionless temperature vs the contacting device 
length at Re = 10000, Pr = IO, .Sc; = 1.500, SC’, = 2500, 
a, = 1.1. it? = 0.9, b, = 0.03, h2 = -0.01 for the boundary 
condition of an isothermal wall (53) and different t, 
(notation same as in Fig. 6) : (I) I, = 0; (2) t, = 0.3; (3) 

1, = 0.5. 

turbulent oscillations are damped and molecular 
diffusion begins prevailing over turbulent diffusion 
(see equations (IO}, (30)-(34)). Moreover, they are 
also exhibited at the film interface, in the heat balance 
condition (9), whereas the equilibrium relations in the 
multicomponent case are of vector form (5). As a 
consequence. instead of 4 parameters governing the 
binary problem solution [ 181, we obtain 3n - I of such 
parameters. This means that, even for the three- 
component example considered, the number of quan- 
tities affecting the solution is already equal to 8. 

A qualitative distinction between multicomponent 
and binary transfer is also reflected in the plots. For 
example, in the binary problem [18], extrema on the 
temperature and concentration profiles were only 
observable in the isothermal wall case (condition 
(52)). Had the adiabatic condition (Isa) at the wall 
be fulfilled, the concentrations and temperature dis- 
tributions represented monotonic functions of the 
contacting device length. At the same time, as clear 
from Figs. 2-9 of the given study, extrema of tem- 

perature and concentration profiles is a widespread 

FIG. 11. Dimensionless concentration of components vs the 
contacting device length (the values of parameters and 
notation same as in Fig. 10) : (1). (2) t, = 0 (( 1) c, ; (2) c2) : 
(3) (4) 1, = 0.3 ((3) c, ; (4) ~2) ; (5), (6) t, = 0.5 ((5) c, ; (6) 

C*). 

phenomenon in multicomponent heat and mass trans- 
fer, irrespective of the selection of a heat boundary 
condition at the wall. 

In the case under consideration, the mutual inffu- 
ence of heat and mass transfer also gets complicated. 
Thus, for instance, the liquid film heating or cooling 
can bring about an alteration in the direction of mass 
transfer of individual mixture components. In turn, 
the interaction of diffusion fluxes, with regard to the 
film interface thermodynamics, affects the heat trans- 
fer rate. 

The coupled process studied is essentially a com- 

bination of the multicomponent interface interaction 
of the components as well as of multicomponent 
diffusion and heat conduction in the Iiquid film, which 
arc complicated by its gravitational flow and turbu- 
lence. Overall, the process is governed by quite a num- 
ber of different, sometimes opposite, motive forces, 
which is precisely the fact that predetermines its 
intricacy. 

9. SIMPLIFIED MODEL. ANALYTICAL 

SOLUTION 

Based on numerical solving of the equations of 

multicomponent substance and energy transfer, it is 
difficult to identify an analytical relationship of the 
mutual influence of heat and mass transfer for binary 
mixtures, since the multicomponent problem is depen- 
dent on a large number of affecting parameters. 

However, in this case the problem formulation is 

simplified and it is assumed that (El, D and u within 
the range under consideration can be used as average 
values, then the system of equations (I) and (2) with 
the boundary conditions (3)-(5) and (9) admits an 
analytical solution in the boundary-layer approxi- 

mation 
Here, the wall conditions are replaced by the 

following : 

y+ --co, T= To, c = c,. (55) 

Let ‘I, = 1 -_rl. Then diagonalization and non- 

dimensionalizing carried out to the foregoing pro- 
cedure lead to the problem 

fll =o, c;+a,t = 1, g = :g: h,: 2 (58) 

4-l +a, t = 0, Cf = 0. (59) 

The system (56)-(59) is solved using the analytical 
method proposed in refs. [17, 281, and the resulting 
dimensionless distributions of temperature and con- 
centrations of the components have the form 

t= [I-erf(gq,)]; 



3656 L. P. KH~LPAN~V and E. YA. KENIG 

c = ( b, - rs’! )(e-ap), REFERENCES 

where 

With the aid of equations (19)-(21), all the dimen- 
sionless quantities can be reduced to dimensional ones 
and the sought distributions are found : 

T= r,,+(l-S,(.u,l’))(T,-T,,)p (60) 

C = Co+ ( 11, - [.%,~)l)(AC,), (61) 

where 

(AC,), = VT,,+W-C,,+V(T,-T,)p; 

The temperature and concentration distributions 
(60) and (61) allow one to obtain expressions for the 
heat and mass fluxes across the interphase. Differ- 
entiating equations (60) and (61) at the pointy = h,, 
yields 

q = -ACT 
(?.v ,=,,,, = 

10. CONCLUSION 

The method proposed for solving the problem 
enables one, firstly, with initial parameters being pre- 
scribed, to determine the component concentration 
and temperature profiles in each section of the con- 
tacting device and to find their interface, near-wall, 
integral-mean and other values ; secondly, to identify 
the sought effective length of the apparatus and, 
thirdly, to theoretically investigate the effect of the 
parameters of turbulent multicomponent heat and 
mass transfer on the solution. Furthermore, the 
method has a number of additional capabilities exem- 
plified by simultaneous absorption of two gases by a 
nonvolatile turbulent falling film of absorbent. 
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